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Abstract

Research and development-based growth models aim to explain the role of technolog-
ical progress in the growth process. The role of knowledge production and intertemporal
spillover effects are investigated using a panel data set covering 49 US states over the
period 1994-2004. The aim is to estimate knowledge flows in the context of a space-time
dynamic suggested by the knowledge production function. A space-time specification
is set forth that can be applied to panel data models with random effects. We compare
models that have been proposed recently in the panel data literature to provide a better
understanding of how new ideas diffuse across space and time. The results indicate that
strong intertemporal knowledge spillovers are present. These results are interpreted in
light of the existing theoretical and empirical literature on endogenous growth.
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1 Introduction

Research and development (R&D)-based models have focused on the functional form of

the knowledge production function when modeling the rate of new knowledge generation.

The spread of newly generated knowledge may have crucial implication for modeling tech-

nological change and economic growth. According to the knowledge production function,

generation of new knowledge depends on the fraction of labor engaged in R&D and the

existing stock of knowledge available to potential inventors. A sharp debate framed by the

work of Romer (1990) and Jones (1995) has focused on how strongly the flow of new ideas

is sensitive to the stock of ideas discovered in the past. But these theoretical models treat

knowledge as completely diffuse within an economy.

There is an existing empirical literature on technology and knowledge diffusion mostly

based on international diffusion flows (Coe and Helpman, 1995). Jaffe and Trajtenberg

(2002) show that knowledge follows a complex diffusion process through geographic, in-

stitutional and technological spaces. Thus, the likelihood of researchers benefitting from

previous inventions increases with proximity and may also vary with the passage of time.

Based on a theoretical model, this paper contributes to the empirical understanding

of economic growth by estimating a knowledge production function that quantifies the

strength of both intertemporal and inter-regional knowledge spillovers. We examine spatial

and time-series patterns of inter-regional patenting to evaluate determinants of the flow of

new knowledge. By evaluating patenting patterns using a panel dataset for 49 US states over

the period 1994-2004, we contribute to an emerging literature on inter-regional knowledge

spillovers. A dynamic model of production of new knowledge with spatial dependence is

motivated and developed. Using a Bayesian approach, we provide a better understanding

of how localization interacts with time.

Spatial panel data models deal with correlation across locations and usually suppose

each period to be independent across the panel. Recent papers (Elhorst, 2004, Baltagi et

al., 2007, Yu al., 2006 and Su and Yang, 2007) add the time dimension to the correlation.

Focusing on the serial correlation, Elhorst (2004) and Baltagi et al. (2007) apply an exten-

sion of the Prais-Winsten transformation by taking into account a stationary process for the

initial observations. Yu et al. (2007) do not model the observations of the first period and
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assume the process is conditional on this initial cross-section. As in Su and Yang (2007) who

consider a dynamic model separating the spatial correlation in the error terms, we discuss

the impact of the initial observations. Either these first observations are endogenous and

the initial observations are approximated using the approach proposed by Bhargava and

Sargan (1983) or these first observations are strictly exogenous and the model is set to be

conditional on them. When the cross-section of the first period is not treated correctly, the

estimator can be biased (Su and Yang, 2007). We focus only on panel data models with

random effects. Fixed effects have been analysed when T is large in Yu et al. (2007) and

for small T in Su and Yang (2007).

The remainder of the paper proceeds as follows. In Section 2, we review the econo-

metric literature focusing on space-time models in panel data. We develop in Section 3 a

parameterization and functional form of the knowledge production function. We extend

the underlying model to incorporate production of new ideas in an inter-regional context.

In Section 4, we analyse the dynamic model applied the the SAR panel data models and

discuss the impact of the initial observations. In Sections 5, we turn to the development of

an empirical model based on the use of patenting data. The principal empirical results are

reviewed before summarizing the conclusions in Section 6.

2 The econometrics context

Spatial panel data models deal with correlation across locations but typically assume each

period is independent across the panel. One exception can be found in work by Baltagi

et al., 2007 and Elhorst (2004), where the disturbance structure of the panel data model

is extended to allow for dependence across both time and space. Specifically, for a panel

where the time index ranges over t = 1, . . . , T and the index i for ranges over the n regions,
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i = 1, . . . , n, we set yt = (y1t, . . . , ynt)′, xt = (x1t, . . . , xnt)′ and we can write the model as:

yt = xtβ + ut (1)

ut = µ + εt

εt = ρWεt + νt

νt = φνt−1 + et

where µ reflect an n−vector of random region-specific effects that are independent and

identically distributed N(0, σ2
µ), and assumed independent of ε. The matrix W is a known

n by n spatial weight matrix whose diagonal elements are zero and ρ is a scalar coefficient

|ρ| < 1, and W is also assumed to satisfy the condition that In − ρW is nonsingular. The

scalar parameter |φ| < 1, and represents time-wise serial correlation whereas ρ reflects

spatial correlation. The disturbance eit ∼ N(0, σ2
e), and stationarity is assumed for the first

period νi,0 ∼ N(0, σ2
ν/(1− φ2)).

This type of panel data model allows for serial and spatial dependence just for the error

term ε. Only variation in the dependent variable yt that is unexplained by the information

set consisting of the explanatory variables and effects parameters is subjected to the serial

and spatial dependence model. An additional point to note about the model structure is

that space and time are separated.

Relaxing assumption of separation and including a new component that mixes the time

lag and the spacial effects, a second set of dependence models have emerged that take the

form (Yu et al., 2007):

yt = ρWyt + φyt−1 + θWYt−1 + xtβ + c + et (2)

where yt is an n by 1 cross-section of observations on the n regions at time t = 1, . . . , T ,

and yt−1 is the vector from the previous time period. The n−vector et contains elements eit

that are assumed i.i.d. across both i and t with constant scalar variance σ2
e . The n−vector

c represents fixed individual effects parameter.

This model filters spatial dependence in the cross-sectional observations at time t using
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the n by n spatial weight matrix W and associated parameter ρ, as well as allowing for

spatial diffusion effects with a one-period time lag reflected in the term: θWyt−1, and

autoregressive order one time dependence captured by: φyt−1. An important difference

between the model in (2) and that of Baltagi et al. (2007) and Elhorst (2004) in (1) is

that the explanatory variables xt must compete with the space-time filter (consisting of a

spatial lag, time lag and space-time lag of the dependent variable) to explain variation in

the dependent variable.

The model in (1) is useful when interest centers on controlling for heterogeneity as well

as spatial and serial correlation in the disturbance process. In situations where interest

focuses on spatial spillovers and diffusion over space through time, the model in (2) seems

more appropriate. To see this distinction, note that, spatial spillovers and diffusion cannot

take place in the model of (1). The impact of changes in the regressors for this model take

the form: ∂yti/∂xti = β′, i = 1, . . . , n; t = 1, . . . , T . So, a change in the regressors of the

model in any region i at any time period will have an impact only on region i, not regions

j 6= i. Further, the change will be equal for all regions and time periods.

In contrast, the model in (2) does allow for spatial spillovers that take a fairly com-

plicated form. Here we have for the rth regressor: ∂yt/∂x
(r)
t = (In − ρW )β(r), where the

superscript (r) denotes the rth column of the matrix xt and the rth element from the vec-

tor β (see Pace and LeSage (2007) for a detailed exposition of this idea). The diagonal

of this n by n matrix reflects own-partial derivatives and the off-diagonal represents cross-

partial derivatives. Both the own- and cross-partial derivatives allow for spatial spillovers.

A change in the regressor for region i will potentially impact all other regions j 6= i, where

this spillover impact is captured by the off-diagonal elements of the n by n matrix of partial

derivative impacts. The main diagonal reflects own-partials, that is ∂yti/∂xti, which also has

a feedback loop. To see this, note that we can express (In−ρW )−1 = In +ρW +ρ2W 2 + . . .,

where higher powers of the matrix W denote higher-order neighbors. For example, W 2 will

identify neighbors to W , the first-order neighbors to region i. W3 will represent neighbors

to these neighbors of the neighbors, and so on. Although the matrix W has zeroes on the

diagonal, the matrices W 2, W 3, etc. do not, reflecting the fact that region i will be a

second-order neighbor to itself. This leads to a situation where a feedback loop exists that
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is captured by the own-partials or main diagonal elements.

The model also allows for diffusion over space with time and time dependence, which can

be seen by considering ∂yt/∂yt−1 = (In−ρW )−1(Inφ+ θW ). Again, changes in past period

values in region i will have a potential impact on all regions j = 1, . . . , n, with the main

diagonal elements of the n by n matrix reflecting own-partials and off-diagonal elements

cross-partials.

Since our interest centers on the space-time dynamics of knowledge spillovers, we will

focus on special cases of the model in (2). Based on a theoretical model developed in the

next section, we consider two models, one that we label Model 1 that allows for space and

time diffusion only after a lag of one period:

yt = φyt−1 + θWyt−1 + ιnα + xtβ + ηt (3)

ηt = µ + εt

where α is the intercept, ιn is an n × 1 column vector of 1 and µ is n × 1 column vector

of random effects with µi ∼ N(0, σ2
µ). The disturbance vector εt = (ε1t, . . . , εNt)′ is i.i.d.

across i and t with zero mean and variance σ2
ε . In this model the impact of changing the

regressors takes the form: ∂yt/∂xt = β as in the conventional independence panel data

model of (1). The time dynamic takes the form: ∂yt/∂yt−1 = Inφ + ρW , so that changes

in region i in previous periods can exert an impact on other regions j 6= i in the next time

period.

Yu et al. (2007) develop a dynamic SAR model that leads to a simultaneous dependence

structure, where changes in the regressors exert an immediate simultaneous impact on all

other regions in the model. Model 2 is a special case where spatial dependence occurs only

at a time lag of one period:

yt = φyt−1 + ρWyt + ιnα + xtβ + ηt (4)

ηt = µ + εt.

This specification assumes the spatial effects are instantaneous, consistent with most of the

models used in the spatial econometric literature. Partial derivative impacts from changes
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in the rth explanatory variable in this model take the form: ∂yt/∂x
(r)
t = (In − ρW )β(r).

The time dynamics of this model are reflected in ∂yt/∂yt−1 = (In − ρW )−1φ.

A key point here is that small changes in the estimates for the scalar dependence pa-

rameters as well as the coefficients on the explanatory variables can lead to large changes

in the space-time impacts of these models due to the non-linear nature of the own- and

cross-partial derivatives. We explore this issue using a reciprocal misspecification experi-

ment that focuses on how changes in treatment of the initial period observations impact

the estimates of the model.

3 Inter-regional Knowledge Production Function

As in Jones (2002) we consider a world consisting of N separate economies or regions. They

differ because of different endowments and allocations, but they have the same production

possibilities. Within an economy or region, all agents are identical. The economies evolve

independently in all respects except one: they share ideas.

In each economy or region, individuals can produce a consumption-capital good that we

will call output. Total output Yi(t) produced at time t for the economy i is given by

Yi(t) = Ki(t)α(Ai(t)Li(t))1−α, (5)

where Ki(t) is physical capital, Li(t) is the total quantity of human capital employed to

produce output, and Ai(t) is the total stock of ideas available to this economy. We assume

0 < α < 1. Notice that there are constant returns to scale and that A is measured in units

of Harrod-neutral productivity. Human capital factors are among the primary determinants

of the production and diffusion process of innovation.

In the model proposed by Jones (2002), ideas represent the only link between economies;

there is no trade in goods, and capital and labor are not mobile. Ideas created anywhere

in the world are available to be used in any economy or region. New ideas are produced by

researchers, using a knowledge production function (Jones, 1995).

However, as recently proposed by Ertur and Koch (2007), the technological interde-

pendence can be through the level of technological progress. The level of technology in
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a country depends on the level of technology in other countries. Since each country has

different access to this international technology they use an N ×N connectivity matrix W

where each element takes values 0 ≤ wij ≤ 1, and the main diagonal elements wii = 0.

Here we propose a dynamic specification where the stock of knowledge in the surrounding

regions has spillover effects on the growth rate of ideas in region i:

Ȧi(t)
Ai(t)

= δLi(t)λAi(t)γ−1
∏

j 6=i

Aj(t)ψwij , (6)

According to equation (6), the number of new ideas produced at any point in time is

driven by the number of researchers and the existing stock of ideas in region i as well as in

surrounding regions. We allow λ < 1 to capture the possibility of duplication in research.

For now, we assume γ < 1 and ψ < 1, but stability conditions are discussed in more detail

later.

Under the assumption that γ < 1, we can define a situation in which all variables grow

at constant rates (possibly zero), so the dynamics of this economy lead to a stable balanced

growth path. Letting gX denote the growth rate of some variable X along the balanced

growth path, we have:

ġAi(t) = 0

⇐⇒ 0 = δλL̇i(t)Li(t)λ−1Ai(t)γ−1
∏

j 6=i

Aj(t)ψwij +

δ(γ − 1)Li(t)λλL̇i(t)Ȧi(t)Ai(t)γ−2
∏

j 6=i

Aj(t)ψwij +

δLi(t)λλL̇i(t)Ȧi(t)Ai(t)γ−2
∏

j 6=i

ψwijȦj(t)Aj(t)(ψwij−1)

⇐⇒ 0 = λ
L̇i(t)
Li(t)

+ (γ − 1)
Ȧi(t)
Ai(t)

+
∑

j 6=i

ψwij
Ȧj(t)
Aj(t)

⇐⇒ gA =
λn

(1− γ)
+

ψ

(1− γ)
WgA

⇐⇒ gA =
[
In − ψ

(1− γ)
W

]−1 λn

(1− γ)
,
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where gA is a vector of steady state growth rates, and n is the vector of steady state growth

rates of researchers. The long-run growth rate of the economy exists only if the matrix

B =
[
In − ψ

(1−γ)W
]

is invertible. Since the matrix W is row-normalized, its maximum

eigenvalue is equal to unity and B is invertible if and only if ψ−1
min < ψ

(1−γ) < 1 where ψmin

is the minimum eigenvalue of W . If ψ = 0, there is no knowledge spillover between regions

and the equilibrium growth rate of the stock of ideas corresponds to the one introduced by

Jones (1995).

We log-linearize equation (6) around gA where Ait and HAit are growing at constant

rates. In this case, the Taylor expansion corresponds to:

Ȧi(t)
Ai(t)

=
Ȧi(t)
Ai(t)

∣∣∣∣∣
gA

+ gA

(
Ȧi(t)
Ai(t)

)′∣∣∣∣∣
gA

[log(gA)− log(gA)]

= gA(1− log(gA/δ)) +

gA


λ log(Li(t))− (1− γ) log(Ai(t)) +

∑

(j 6=i)

ψwij log(Aj(t))


 (7)

Focusing on the specific case where ψ = 0, Jones (2002) underlines several sources of

misspecification in estimating the model in (7). Reverse causality may occur and a more

complex autoregressive structure for the distributed lag of research could be elaborated.

Jones (2002) makes the important point that log(Li(t)) and log(Ai(t)) are cointegrated.

We can rewrite (7) as

log(Ai(t + 1)) = gA(1− log(gA/δ)) +

gA


λ log(Li(t))− (1− γ − 1/gA) log(Ai(t)) +

∑

(j 6=i)

ψwij log(Aj(t))




log(Ai(t + 1)) = φ log(Ai(t)) +
∑

(j 6=i)

θwij log(Aj(t)) + α + β log(Li(t)), (8)

where φ = −gA(1− γ) + 1, θ = gAψ, α = gA(1− log(gA/δ)) and β = gAλ.

This diffusion process is similar to an autoregressive model where spatial interaction

occurs with a lag of one period. In the next section we will focus on the two different

specifications presented in the previous section.
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4 Spatial dynamic panel data models

From the theoretical model developed in (8), we first consider the Model 1 as shown in (3).

Using matrix notation, let Y = (y′1, . . . , y
′
T )′, Y−1 = (y′0, . . . , y

′
T−1)

′ and X = (x′1, . . . , x
′
T )′.

We can write Model 1 as

Y = φY−1 + θ(It ⊗W )Y−1 + ιnT α + Xβ + η (9)

η = Uµ + ε

where U = ιt ⊗ In.

The variance-covariance matrix of η has the form E(ηη′) = Ω with

Ω = σ2
µ(JT ⊗ In) + σ2

ε(IT ⊗ In), (10)

where JT = ιT ι′T .

If we assume that y1 is taken as exogenous, the likelihood function is conditional on y1.

Setting u = Y − (φIn + θW )Y−1 −Xβ − ιnT α, the log-likelihood function of the complete

sample size of T is:

log L(ξ) = −nT

2
log(2π)− 1

2
log |Ω| − 1

2
u′Ω−1u (11)

where ξ = (β′, α, σ2
ε , σ

2
µ, φ, θ)′.

Baltagi et al. (2007) focusing on a serial and spatial correlation in the error term intro-

duce a Prais-Winsten transformation and therefore assume that u0 ∼ N(0, σ2
u/(1− φ2)In),

where |φ| < 1. Since we propose a dynamic model, we have to assume the explanatory

variables to be strictly exogenous and generated by a stationary time process. We follow

the estimation procedure used by Bhargava and Sargan (1983).

By substitution of the spatial dynamic panel data model described by (10), the obser-
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vation yt is equal to:

yt =
+∞∑

s=0

Asyt−s +
+∞∑

s=0

Asxt−s +

(In −A)−1(ιNα + µ) +
+∞∑

s=0

Asεt−s (12)

where A = φIn + θW

The stationary assumption |A| < 1 implies the first right-hand side variable approaches

zero as s approaches infinity. Since
∑+∞

s=0 x−s is not observed, V ar(y0) is undetermined.

Bhargava and Sargan (1983) suggest predicting y0 by replacing all the exogenous regressors

by x̄ = (T + 1)
∑T

t=0 xt. The optimal predictor x̃ under the stationary assumption is

π0ιn+x̄π1+ξ, where ξ ∼ N(0, σ2
ξ0

In). For calculation simplicity, we will assume σ2
ξ = σ2

ξ0
σ2

ε ,

were σ2
ξ0

is a variance parameter to be estimated. Then the initial observation y0 can be

approximated by y0 = ỹ0 + ξ0 where ỹ0 = π0ιn + x̄π1 and

ξ0 = ξ +
+∞∑

s=0

Asε−s. (13)

Thus,

w11 = E(ξ0ξ
′
0) =

[
σ2

ξIn + (In −AA′)−1
]
σ2

ε + [(In −A)′(In −A)]−1σ2
µ (14)

w21 = E(ξ0η
′) = σ2

µ(In −A)−1ι′T ⊗ In (15)

The joint distribution of yT , . . . , y1, y0 is derived from (3), (11), and (13). Denoting by

Ω? the n(T +1)×n(T +1) variance matrix of u = (ξ0, η
′)′, we see that Ω? has the following

form:

Ω? =


 w11 w′21

w21 Ω


 ,

where Ω, w11 and w21 are defined in (10), (14) and (15), respectively.

The unconditional log likelihood has the following form:
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log L(ξ) = −n(T + 1)
2

log(2π)− 1
2

log |Ω?| − 1
2
u?′Ω?u? (16)

where ξ = (β′, α, σ2
ε , σ

2
µ, φ, θ)′ and u? = (y′0−π0ι

′
n−π′1x̄

′, u′)′ and u = Y − (φIn +θW )Y−1−
Xβ − ιnT α.

As explained in Section 2, Model 2 represents a second specification that allows for a

time lag and simultaneous spatial effect as expressed in (4). The idea is to compare these

two models in order to give a better understand of how new ideas are diffused across space

and time. The first model captures the space and time diffusions only trough the previous

period whereas the second model separates the spatial effects from the time effects. Thus,

the latter specification assumes the spatial effects are instantaneous, consistent with most

of the models used in the spatial econometric literature.

The recent literature about space-time modeling in panel data focuses mostly on sta-

tionary processes, where the stationary constraint is imposed by assuming y0 is endogenous.

Elhorst (2007) introduced the idea of extending the Prais-Winsten transformation to the

case of a space-time model. As in the case of the first model, we follow the estimation

procedure proposed by Bhargava and Sargan (1983).

By substitution of the spatial dynamic panel data model described by (4), the observa-

tions yt are equal to:

Byt = (φB−1)sAyt−(s+1) +
+∞∑

s=0

(φB−1)sxt−s +

(In − (φB−1))−1(ιNα + µ) +
+∞∑

s=0

(φB−1)sεt−s. (17)

where B = IN − ρW .

Assuming the process started a long time ago, the stationary assumption |φB−1| < 1

implies the first right-hand side variable approaches zero as s approaches infinity. These

stationary assumption are equivalent to |φ| < 1 − ρ if ρ ≥ 0 and |φ| < 1 − ρψmin if ρ < 0.

This allows B−1(In − (φB−1))−1 = (B − φIn)−1 to be invertible and therefore the first
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period corresponds to:

y0 = B−1
+∞∑

s=0

(φB−1)sx−s + (B − φIn)−1(ιNα + µ) + B−1
+∞∑

s=0

(φB−1)sε−s. (18)

Since
∑+∞

s=0 x−s is not observed, V ar(y0) is undetermined. Bhargava and Sargan (1983)

suggest predicting y0 by replacing all the exogenous regressors by x̄ = (T + 1)
∑T

t=0 xt.

And the optimal predictor x̃ under the stationary assumption is π0ιn + x̄π1 + ξ, where

ξ ∼ N(0, σ2
ξ0

In). For calculation simplicity, we will assume σ2
ξ = σ2

ξ0
σ2

ε , were σ2
ξ0

is a

variance parameter to be estimated. Then the initial observation y0 can be approximated

by y0 = ỹ0 + ξ0 where ỹ0 = π0ιn + x̄π1 and

ξ0 = ξ + (B − φIn)−1µ + B−1
+∞∑

s=0

(φIn + ρW )sε−s. (19)

Thus,

w11 = E(ξ0ξ
′
0) =

{
σ2

ξ0In +
[
B′B − φ2B′(B′B)−1B)′

]−1
}

σ2
ε +

[
(B − φIn)′(B − φIn)

]−1
σ2

µ (20)

w21 = E(ξ0η
′) = σ2

µ(In − φB−1)−1ι′T ⊗ In (21)

Denoting by Ω? the n(T + 1)× n(T + 1) variance matrix of u = (ξ0, η
′)′, we see that Ω?

has the following form:

Ω? =


 w11 w12

w21 Ω


 ,

where Ω, w11 and w12 = w21, are defined in (10), (20) and (21), respectively.

The unconditional log likelihood has the following form:

log L(ξ) = −n(T + 1)
2

log(2π)− 1
2

log |Ω?| − 1
2
u?′Ω?u? (22)

where ξ = (β′, α, σ2
ε , σ

2
µ, φ, ρ)′ and u? = (y′0−π0ι

′
n−π′1x̄

′, u′)′ and u = Y − (φIn +ρW )Y−1−
Xβ − ιnT α.
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Su and Yang (2007) have shown that when the cross-section of the first period is ex-

ogenous but treated incorrectly as endogenous, the estimator can be biased. Estimator are

also biased when y0 is endogenous but treated incorrectly as exogenous. We will present

for each model both treatments for the cross-section of the first period.

5 Estimation Method

Even if most of the studies used the Quasi-Maximum Likelihood (QML) estimation, the

most difficult step is to maximize the concentrated log-likelihood function of θ and φ (see

Su and Yang, 2007; Yu et al. 2007).

The MCMC method can handle the problem of local optima, that often arise in space-

time modeling. In the presence of local optima, conventional likelihood methods may pro-

vide misleading inference whereas the ability of Bayesian MCMC methods to directly sample

from the posterior can avoid some of these problems (Lesage and Pace, 2007).

Bayesian inference is based on the joint posterior distribution of the parameters given

the data. Due to the hierarchical structure of (6), its unnormalized form is easily derived

as:

p(α, β, σ2
µ, σ2

ε , θ, φ, π0, π1, σ
2
ξ0 |y) ∝ p(y|β, α, µ, σ2

ε , φ, θ, π0, π1, σ
2
ξ0)p(µ|σ2

µ)p(σ2
µ)p(β)

p(α)p(θ)p(σ2
ε)p(φ)p(π0)p(π1)p(σ2

ξ0) (23)

where the expression p(y|.) is the likelihood function and p(.) are the prior distributions.

Note that we propose a sampling scheme discarding the first period. Direct evaluation

of the joint posterior distribution involves multidimensional numerical integration and is

not computationally feasible. We use MCMC sampling methods which involve generating

sequential samples from the complete set of conditional posterior distributions detailed in

Appendix A.
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6 Empirical Results

To estimate Model 1 and Model 2, we must measure the stock of ideas. Observable measures

of new ideas at a regional or international level are never perfect. We organize the analysis

by focusing on observed number of U.S. domestic patents, a useful indicator of the state

level of realized innovation for a given period. We estimate the knowledge production

function using a dataset of patenting activity and its determinants from 1994 to 2004 across

49 states.1 The data include the granted patents per capita for each state in each year

and measures of the factor inputs into ideas production. We review in Appendix B the

definition and summary statistics associated with each of the measures. Figure 1 represents

the average growth rates of granted patent per 100,000 inhabitants across the US over the

period 1994-2004. Highest growth rates are located in the West regions, west of the Midwest

and in New-England with the largest value for the state of Idaho. Regions with the lowest

growth rates are located in East North Central and East South Central and the state of

West Virginia has the lowest value. Figure 2 shows the evolution of the granted patent per

capita over time. Interestingly we note that over the last decade, regions with the highest

level of granted patent per capita are also those who have the highest growth rates (Idaho,

Vermont, California, Oregon,etc.). And regions with the lowest level of innovation are those

with the lowest growth rates (Mississippi, Arkansas, West Virginia, Louisiana, Alabama,

etc). These observations may suggest that convergence in the United States proceeds among

geographically neighboring states rather than among distant states.

Skilled labor Li(t) for each state i at the period t is measured with two different explana-

tory variables, LPosti(t), the number of Postdoctorates in Science and Engineering, and

ExpRDi(t), the total Research and development expenditures as a percentage of the gross

state product. Total R&D expenditures are calculated by adding all the sources of funds:

industry, public and private non-profit institutes and universities. For Model 1, the stock
1The District of Columbia is treated as a state and the states of Alaska and Hawaii are omitted.
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of granted patents per worker for state i at the period t results in the following regression:

log(Ait) = α + φ log(Ai,t−1) +
∑

(j 6=i)

θwij log(Aj,t−1) +

β1 log(LPosti,t−1) + β2 log(ExpRDi,t−1) + ηt

ηt = µ + εt. (24)

For Model 2 we allow for a time lag and simultaneous spatial effect:

log(Ait) = α + φ log(Ai,t−1) +
∑

(j 6=i)

ρwij log(Aj,t) +

β1 log(LPosti,t) + β2 log(ExpRDi,t) + ηt

ηt = µ + εt. (25)

Note that from the theoretical model we have derived in the first section, there is a lag

of one period for the explanatory variables. As previously explained, explanatory variables

and the dependent variable have to be cointegrated in this case (Jones, 2002). Note that

this lag is omitted in the second specification.

These two models allow us to perform empirical analyses dissecting the drivers of do-

mestic innovative capacity and evaluate the impact of the diffusion process of neighboring

activities on regional innovative performance. Table 1 and Table 2 report the regression re-

sults for both specifications.2 Consistent with the ideas-based growth literature, the results

suggests that the level of innovation is influenced powerfully its level of effort devoted to

the ideas sector.

Expenditures in R&D have a more permanent impact on the growth process if a highly

skilled workforce eases the adoption of new technologies. Advanced regions in technology

indeed often have strong links with education, especially at the post doctoral level. Thus,

high education should lead to a faster rate of technological progress via improvements in the

quality of the workforce. However for both model, the effects of the variable LPost is not

significant. Focusing on the expenditure in R&D, results reveal a strong positive influence
2Estimation results are based on a simulated chain where the first 5,000 samples are discarded as a

’burn-in’ period, followed by 15,000 iterations.
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Table 1: Estimation Results for Model 1 - 20,000 iterations

parameter Post. mean s. d. Low. 0.05 Up. 0.95 Post. mean s. d. Low. 0.05 Up. 0.95
Const -0.054 0.157 -0.364 0.136 0.382 0.060 0.289 0.485

ExpRD 0.096 0.035 0.020 0.172 0.070 0.027 0.025 0.112
LPost 0.021 0.022 -0.014 0.061 -0.013 0.014 -0.037 0.010

σ2
ε 0.069 0.039 0.043 0.118 0.015 0.001 0.013 0.017

σ2
µ 0.050 0.020 0.022 0.087 0.054 0.013 0.037 0.08
θ 0.358 0.025 0.321 0.396 0.265 0.016 0.245 0.293
φ 0.530 0.086 0.409 0.643 0.564 0.016 0.536 0.589

Note: The last four column correspond to estimates treating y1 exogenously, whereas the
other column corresponds to estimates treating y1 endogenously.

Table 2: Estimation Results for Model 2 - 20,000 iterations

parameter Post. mean s. d. Low. 0.05 Up. 0.95 Post. mean s. d. Low. 0.05 Up. 0.95
Const 0.036 0.061 -0.043 0.150 0.347 0.108 0.167 0.505

ExpRD 0.061 0.023 0.024 0.102 0.037 0.019 0.005 0.066
LPost 0.010 0.015 -0.013 0.036 -0.005 0.012 -0.026 0.015

σ2
ε 0.045 0.011 0.028 0.066 0.013 0.000 0.011 0.014

σ2
µ 0.006 0.006 0.001 0.019 0.058 0.014 0.036 0.086
ρ 0.323 0.014 0.302 0.353 0.302 0.012 0.285 0.324
φ 0.580 0.031 0.537 0.626 0.571 0.032 0.521 0.611

Note: The last four column correspond to estimates treating y1 exogenously, whereas the
other column corresponds to estimates treating y1 endogenously.

on the innovative activities.

Focusing on the random effects, estimation results depicted in Figure 3 show strong

positive effect in the Western and Northeaster regions. Idaho, which has the largest positive

value, is a relatively small state with a growing science and technology sector which amounts

for over 25% of the State’s total revenue. The combination of a very high-valued output

and low level of skilled labor and postdoctoral students results in the large values for the

random coefficient. Similar observation can be relevant for the State of Vermont with

leading innovative firms like IBM. On the other side states like West Virginia or Louisiana

have the lowest growth rate of innovative activities despite the large number of postdoctoral
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students. This could explain the negative values for the random effects. It is difficult for

technological laggards to progress as the technological leading states. For most regions, a

substantial amount of technical effort is devoted towards imitative or absorptive activity

rather than the production of innovative activities. Skills availability in the western parts

of the U.S. meets the needs of the labour market. In these regions, innovative economic

activities are helped by the presence of high number of research or scientist per capita.

Local spillover effects are related to the presence of the knowledge stock of neighboring

regions. It requires that regions possess the ability to absorb and to adopt new technologies

(see Parent and LeSage, 2008). R&D activities can increase the incidence of technology

diffusion by enhancing the regional absorptive capacity. Our result confirm that R&D

expenditure can directly increases the level of regional innovative activities. Therefore

increasing R&D absorptive capacity can facilitate technology spillovers from other regions.

We propose two different specification to measure the impact of neighboring regions. In

Model 1, we assume that new ideas may not be created immediately in response to a change

in the level of neighboring innovative activities. Spatial dependence is these effects may not

occur immediately in response to a change in the number of scientists of researchers. The

relationship between the stock of ideas log(Ait) and log(Ai,t−1), represents the relationship

between ideas discovered today and the number of ideas previously revealed. Note that the

sum of the parameters φ + θ is smaller than unity, revealing that the process is stationary

with the time effect having a greater weight than the spatial dependence. This evidence

reveals the possibility of knowledge diffusion across space and time. The second model

which is usually used in spatial econometrics assume simultaneous spatial dependence. The

strength of the spatial dependence ρ in Model 2 is positive indicating a strong effect among

geographically adjacent area on innovative activities. This result confirms that technological

innovation at a regional level cannot be assumed statistically independent because of the

presence of similar observations among neighboring regions (Anselin et al. 1997). The

spatial effects are modeled using a spatial weight matrix W based on contiguity between

regions. Interactions between regions are spatially limited and reveal that localized spillovers

effects lead to regional clusters with persistently different levels of innovative activities.

These results have been confirmed by Keller (2002) who has underlined the importance of
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geographic distance for technology diffusion.

These specifications suggest that key elements that are amenable to policy change in

regional economics are significant in explaining innovative productivity across regions over

the past decade. This empirical analysis has addressed the question to what extent the

geographical proximity affects the diffusion process of innovative activities over time. In

particular, we show that regions located in the West and Northeast have a higher stock of

technological knowledge at their disposal than more centrally located regions.

7 Conclusion

This paper reveals some of the key findings of recent research on regional innovative ca-

pacity. Our findings suggest (a) that patenting activities are well-characterized by different

economic factors which may be affected by public policy and (b) that the United States

has experienced substantial space and time dependence on the regional innovative capacity

over the last decade.

We introduce a new endogenous growth model framework containing technological

change to incorporate spatially structured technological diffusion over time. This can be in-

terpreted as reflecting spillovers that arise in the dynamic process that governs technological

growth over time. A Bayesian approach is then proposed in order to estimates the spatial

diffusion of innovative activities in a dynamic framework. An empirical study based on US

domestic granted patents across 49 states over the period 1994-2004 reveals the importance

of proximity for technology diffusion and discuss how innovative activities are limited by

distance. In future work, we hope to extend this framework, to provide further evidence

about the relationship between the regional innovation infrastructure and R&D productiv-

ity in individual industrial clusters using a Vector Autoregressive specification with spatial

dependence.
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Appendix A

For both models, we suppose that the prior distribution of p(α, β, σ2
µ, σ2

ε , ψ, φ, π0, π1, σ
2
ξ0

)

are all a priori independent, where ψ = θ for Model 1 and ψ = ρ for Model 2. We estimate

separately the intercept term α and the parameters β assuming a non-hierarchical prior of

the independent Normal-Gamma variety. Thus,

α ∼ n(α0, M
−1
α ) (26)

β ∼ n(β0,M
−1
β )

σ−2
ε ∼ G(v0/2, S0/2)

Focusing first on Model 1, since the first period does not depend on β, combining the

normal prior of β in (26) with the likelihood of β defined by (16), we obtain using standard

results that

p(β|y, σ2
ε , µ, φ, θ, α) ∝ exp

{
− 1

2σ2
ε

(Ṽ −Xβ)′(Ṽ −Xβ)
}

exp
{
−1

2
(β − β0)′Mβ(β − β0)

}

∝ exp
{
−1

2
(β − β1)′(σ−2

ε X ′X + Mβ)(β − β1)
}
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where Ṽ = Y − (φIn + θW )Y−1 − ιnT α − Uµ, β1 = [σ−2
ε X ′X + Mβ]−1[σ−2

ε X ′Xβ̂ + Mββ0]

and β̂ = (X ′X)−1X ′Ṽ . That is p(β|y, σ2
ε , µ, φ, θ, α) ∼ N(β1, [σ−2

ε X ′X + Mβ]−1).

Simulating the constant term α is also straightforward. We adopt the same procedure to

draw from the posterior distribution of the intercept term. Therefore p(α|y, β, σ2
ε , µ, φ, θ) ∼

N(α1, [σ−2
ε nT+Mα]−1), where α1 = [σ−2

ε nT+Mα]−1[σ−2
ε nT α̂+Mαα0] and α̂ = (nT )−1ι′nT (Ỹ−

µ−Xβ), with Ỹ = Y −AY−1 and A = φIn + θW .

To estimate the random effects, we use a proper prior and we assume that, for i =

1, . . . , n, µi ∼ N(0, σ2
µ) with µi and µj being independent of one another for i 6= j.

A hierarchical structure of the prior arises because we treat σ2
µ as unknown parame-

ters which require its own prior. We define the error terms as the nT × 1 vector u? =

(y′0 − π0ι
′
n − π′1x̄

′, u′)′ where u = Y − (φIn + θW )Y−1 − Xβ − ιnT α. We obtain the fol-

lowing posterior distribution p(µ|y, β, α, σ2
ε , θ, φ) ∼ N(m1, [σ−2

ε U ′Ω−1
0 U + σ−2

µ In]−1), where

m1 = [σ−2
ε U ′Ω−1

0 U + σ−2
µ In]−1[σ−2

ε U ′Ω−1
0 u?], where

Ω0 =


 σ2

ξIn + (In −AA′)−1 0

0 In(T−1)


 . (27)

For the hierarchical structure of the random term, we specify a Gamma distribution

for the precision parameter, σ−2
µ ∼ G(v1/2, S1/2). Thus, the posterior distribution for σ−2

µ

corresponds to

p(σ−2
µ |y, σ2

ε , µ, φ, θ) ∝ (σ−2
µ )n/2exp

{
−σ−2

µ

2
µ′µ

}
(σ−2

µ )v1/2−1exp

{
−σ−2

µ

2
S1

}

∝ (σ−2
µ )(v1+n)/2−1exp

{
−σ−2

µ

2
(µ′µ + S1)

}

that is p(σ−2
µ |y, γ, µ, θ) ∼ G([v1 + n]/2, [µ′µ + S1]/2).

Using also a Gamma distribution for the precision parameter, σ2
ε ∼ G(v0/2, S0/2), the

conditional posterior is given by:
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σ2
ε |y, γ, µ, θ ∼ G(τ , H) (28)

τ = (T + v0)/2

H = (u?′Ω−1
0 u? + S0)/2,

we adopt improper prior for φ and θ which are uniformly distributed over the real line.

θ|µ, σ2
ε , φ, y ∝ |σε|−n(T+1)

∣∣∣σ2
ξ0In +

[
In − (φIn + θW )(φIn + θW )′

]−1
∣∣∣
−1

exp
(
− 1

2σ2
ε

e′Ω−1
0 e

)
. (29)

This is not reducible to a standard distribution, so we adopt a Metropolis-Hastings

step during the MCMC sampling procedures that relies on a random walk proposal with

normally distributed increments, θnew = θold + γN(0, 1). The acceptance probability is

calculated as the ratio of (29) evaluated at the old and new candidate draws. The proposal

turning parameter was systematically incremented or decremented when the acceptance

rate moved below 0.40 or above 0.60, which lead to an acceptance rate close to 0.50 after

a burn-in period. We compute the log-determinant term using a direct sparse matrix LU

decomposition approach described in Pace and Barry (1997) that produces vectorized grids

of values for this over the domain of support for θ and φ. We draw φ using the same

sampling procedure.

Relating to the first period, parameters π0 and π1 are generated the same way we draw α

and β. Assuming a Normal prior for π1 ∼ N(b1, T
−1
1 ), the posterior distribution corresponds

to p(π1|y0, σ
2
ε , φ, θ, π0, σ

−2
ξ0

) ∼ N(b̃1, T̃1), where T̃1 = (x̄′w−1
11 x̄+T1) with w11 defined in (14)

and b̃1 = T̃−1
1 [x̄′w11(y0 − π0) + T1b1].

We use a Normal prior for π0 ∼ N(b0, T
−1
0 ). Therefore the posterior distribution is

equivalent to p(π0|y0, σ
2
ε , φ, θ, π1, σ

−2
ξ0

) ∼ N(b̃0, T̃0) where T̃0 = (ι′nw−1
11 ιn + T0) and b̃0 =

T̃−1
0 [ι′nw11(y0 − x̄π1) + T0b0].

We use an additional Metropolis Hastings step in order to generate σ2
ξ0

. A Gamma distri-
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bution is introduced as a prior for σ−2
ξ0
∼ G(v2/2, S2/2). Thus the posterior is proportional

to

σ−2
ξ0
|y0, σ

2
ε , φ, θ, π1 ∝ (σ−2

ξ0
)v2/2(σ−2

ε )n/2
∣∣∣σ2

ξ0In +
[
In − (φIn + θW )(φIn + θW )′

]−1
∣∣∣
−1

exp

{
−e′Ω−1

0 e

2σ2
ε

− S2

2σ2
ξ0

}
(30)

where Ω−1
0 is defined in (27).

The MCMC sampling procedures relies again on a random walk proposal with normally

distributed increments, σ2
ξ0new = σ2

ξ0old +γN(0, 1). The acceptance probability is calculated

as the ratio of (30) evaluated at the old and new candidate draws.

For each of these Metropolis-Hastings algorithm, we need to satisfy the stationarity

assumption
∣∣∣σ2

ξ0
In + [In − (φIn + θW )(φIn + θW )′]−1

∣∣∣ < 1.

The estimation method for Model 2 is similar if we replace θ by ρ and Ṽ = Y −φY−1−
ρWY − ιnT α−Uµ. We obtain the same posterior distribution for the parameters β, α and

the parameters for the first cross section π0, π1 and σ2
ξ0

.

For the posterior distribution of the random coefficient µ, for and for the parameters

σ2
mu and σ2

ε , we need to redefine the variance matrix Ω0 using equations 14 and 15.

We adopt again an improper prior for ρ and its posterior distribution is given by

ρ|φ, µ, σ2
ε , φ, y ∝ |σε|−n(T+1)|B|−T

∣∣∣σ2
ξ0In +

[
B′B − φ2B′(B′B)−1B)′

]−1
∣∣∣
−1

exp
(
− 1

2σ2
ε

e′Ω−1
0 e

)
. (31)

The same MCMC sampling procedures that relies on a random walk proposal with

normally distributed increments is implemented to generate draws from the conditional

distribution of ρ and φ.
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Appendix B

The dependent variable corresponds to the number of U.S. patents granted by the U.S.

Patent and Trademark Office during the period 1994-2004.3 We assume that ideas pro-

duction in a given year is reflected in research activities undertaken previously. National

Patterns of R&D Resources and can be downloaded from the National Science Foundation

Website. They describe and analyze patterns of research and development (R&D) in the

United States every year since 1994. Data related to Postdoctoral studies are derived from

the fall 2005 National Science Foundation-National Institutes of Health Survey of Graduate

Students and Postdoctorates in Science and Engineering. The measure of output is Gross

State Product (GSP) in manufacturing from the BEA Website.

Table 3: Descriptive statistics
Variable mean std min max
A 24.37 4.60 3.85 135.98
ExpRD 23.24 0.59 2.86 94.78
Lpost 586.3 129.6 17 5008

Figures

3Data available at the U.S. Department of Commerce, U.S. Patent and Trademark Office. Patent Counts
By Country/State And Year: Utility Patents: January 1, 1963 - December 31, 2006
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Figure 1: Average growth rates of granted patent per 100,000 inhabitants across the US
(1994-2004)
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Figure 2: Granted patent per 100,000 inhabitants across the US (1994-2004)
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Figure 3: Estimation results for the random effects (missing values are not significant at
the 95% HPDI)
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